Semi Regular Lattice Polyhedra

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-Lattice Polyhedra: Duality

This is the first in a series of papers that explores a class of polyhedra we call 2-lattice polyhedra. 2-Lattice polyhedra are a special class of lattice polyhedra that include network flow polyhedra, fractional matching polyhedra, matroid intersection polyhedra, the intersection of two polymatroids, etc. In this paper we show that the maximum sum of components of a vector in a 2-lattice polyh...

متن کامل

Lattice closures of polyhedra

Given P ⊂ R, a mixed integer set P I = P ∩ (Z × Rn−t), and a k-tuple of n-dimensional integral vectors (π1, . . . , πk) where the last n− t entries of each vector is zero, we consider the relaxation of P I obtained by taking the convex hull of points x in P for which π 1 x, . . . , π T k x are integral. We then define the k-dimensional lattice closure of P I to be the intersection of all such r...

متن کامل

Lists of Face-Regular Polyhedra

We introduce a new notion that connects the combinatorial concept of regularity with the geometrical notion of face transitivity. This new notion implies finiteness results in the case of bounded maximal face size. We give lists of structures for some classes and investigate polyhedra with constant vertex degrees and faces of only two sizes.

متن کامل

Geodesic trajectories on regular polyhedra

Consider all geodesics between two given points on a polyhedron. On the regular tetrahedron, we describe all the geodesics from a vertex to a point, which could be another vertex. Using the Stern– Brocot tree to explore the recursive structure of geodesics between vertices on a cube, we prove, in some precise sense, that there are twice as many geodesics between certain pairs of vertices than o...

متن کامل

Unfolding Lattice Polygons on Some Lattice Polyhedra∗

We consider the problem of unfolding lattice polygons embedded on the surface of some classes of lattice polyhedra. We show that an unknotted lattice polygon embedded on a lattice orthotube or orthotree can be convexified in O(n) moves and time, and a lattice polygon embedded on a lattice Tower of Hanoi or Manhattan Tower can be convexified in O(n) moves and time.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kirkuk University Journal-Scientific Studies

سال: 2011

ISSN: 2616-6801

DOI: 10.32894/kujss.2011.42543